
O
p

en
st

ac
k

B
eg

in
n

er
's

 G
u

id
e

fo
r

U
b

u
n

tu
 -

N
at

ty

OpenStack Beginner’s Guide
(for Ubuntu - Oneiric)

v2.0, 11 Nov 2011

Atul Jha
Johnson D

Kiran Murari
Murthy Raju
Suseendran RB

Yogesh Girikumar

http://www.csscorp.com/

OpenStack Beginner’s Guide
(for Ubuntu - Oneiric)

v2.0, 13 Oct 2011

’Ubuntu’, the Ubuntu Logo and ’Canonical’ are registered trademarks of Canonical. Read
Canonical’s trademark policy here.

CSS, CSS Corp., and the CSS Corp logos are registered trademarks of CSS Corp. Pvt. Ltd

All other trademarks mentioned in the book belong to their respective owners.

This book is aimed at making it easy/simple for a beginner to build and maintain a private
cloud using OpenStack. This book will be updated periodically based on the suggestions, ideas,
corrections, etc., from readers.

Mail Feedback to: css.ossbooks@csscorp.com

Please report bugs in the content of this book at :
https://bugs.launchpad.net/openstackbook/+filebug and we will try to fix them as early as
possible and incorporate them in to the next version of the book.

Released under Creative Commons - Attribution-NonCommercial-ShareAlike 3.0 Unported
license.

A brief description of the license

A more detailed license text

CC $

BY NC SA

http://www.canonical.com/
http://www.ubuntu.com/aboutus/trademarkpolicy
http://www.csscorp.com/
mailto:css.ossbooks@csscorp.com
https://bugs.launchpad.net/openstackbook/+filebug
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/

Preface

Introduction

We released our ”Eucalyptus Beginner’s Guide - UEC Edition” as articles and as a downloadable
pdf on our blog at http://cssoss.wordpress.com/ in May 2010 and had a very good response from
users of Eucalyptus. Encouraged by the response, we started working with OpenStack in early
2011 and released a set of articles about OpenStack for beginners on our blog. Here is the pdf
version.

Target Audience

Our aim has been to provide a guide for a beginner to OpenStack. Good familiarity with vir-
tualization is assumed, as troubleshooting many OpenStack-related problems requires a good
knowledge of virtualization. Similarly, familiarity with Cloud Computing concepts and termi-
nology will be of help. Prior exposure to AWS API and/or tools is not mandatory, though such
exposure will accelerate the learning process greatly.

Acknowledgement

Most of the content has been borrowed from web resources like manuals, documentation, white
papers etc. from OpenStack and Canonical; numerous posts on OpenStack and Ubuntu forums;
discussions on OpenStack IRC Channel and many articles on the web including those of our
colleagues at CSS Corp. We would like to thank all the authors of these resources.

License

Attribution-Noncommercial-Share Alike 3.0 Unported. For the full version of the license text,
please refer to http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode and http:

//creativecommons.org/licenses/by-nc-sa/3.0 for a shorter description.

Feedback

We would really appreciate your feedback. We will enhance the book on an ongoing basis based
on your feedback. Please mail your feedback to css.ossbooks@csscorp.com.

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0
mailto:css.ossbooks@csscorp.com

OpenStack Compute Starter Guide 1

Contents

1 Introduction to OpenStack and Its Components 7

1.1 Cloud Computing . 7

1.2 OpenStack . 7

1.2.1 Open Stack Compute Infrastructure (Nova) . 8

1.2.1.1 Functions and Features: . 8

1.2.1.2 Components of OpenStack Compute . 8

1.2.1.2.1 API Server (nova-api) . 9

1.2.1.2.2 Message Queue (Rabbit MQ Server) . 9

1.2.1.2.3 Compute Worker (nova-compute) . 10

1.2.1.2.4 Network Controller (nova-network) . 10

1.2.1.2.5 Volume Workers (nova-volume) . 10

1.2.1.2.6 Scheduler (nova-scheduler) . 10

1.2.2 OpenStack Storage Infrastructure (Swift) . 10

1.2.2.1 Functions and Features . 10

1.2.2.2 Components of Swift . 11

1.2.2.3 Swift Proxy Server . 11

1.2.2.4 Swift Object Server . 11

1.2.2.5 Swift Container server . 11

1.2.2.6 Swift Account Server . 11

1.2.2.7 The Ring . 11

1.2.3 OpenStack Imaging Service (Glance) . 12

1.2.3.1 Functions and Features (Glance) . 12

1.2.3.2 Components of OpenStack Imaging Service (Glance) . 12

2 Installation and Configuration 13

2.1 Introduction . 13

2.2 Server1 . 13

2.2.1 Base OS . 14

2.2.2 Networking Configuration . 14

2.2.3 NTP Server . 15

2.2.4 Databases . 15

2.2.4.1 MySQL . 15

2.2.4.2 PostgreSQL . 16

2.2.4.3 SQLite . 16

2.2.5 Glance . 16

2.2.5.1 Database Configuration . 16

2.2.5.1.1 MySQL . 16

2.2.5.1.2 PostgreSQL . 17

2.2.6 Nova . 17

2.2.6.1 Database Configuration . 17

2.2.6.1.1 MySQL . 18

2.2.6.1.2 PostgreSQL . 18

2.2.6.2 Nova Configuration . 18

2.2.7 Swift . 21

2.2.7.1 Swift Configuration . 21

2.2.7.1.1 Physical Device (Partition) as a storage . 21

2.2.7.1.2 Loopback Device (File) as storage . 21

2.2.7.2 Configuring Rsync . 22

2.2.7.3 Swift Configuration . 24

2.2.7.4 Proxy Server Configuration . 24

2.2.7.5 Account Server Configuration . 24

2.2.7.6 Container Server Configuration . 25

2.2.7.7 Object Server Configuration . 25

2.2.7.8 Building the rings . 26

2.2.7.9 Running_Swift_Services . 26

2.2.7.10 Testing Swift . 27

2.3 Server2 . 28

2.3.1 BaseOS . 28

2.3.2 Networking Configuration . 28

2.3.3 NTP Client . 28

2.3.4 Nova Components (nova-compute alone) . 29

2.4 Client1 . 29

2.4.1 BaseOS . 29

2.4.2 Networking Configuration . 30

2.4.3 NTP Client . 30

2.4.4 Client Tools . 30

OpenStack Compute Starter Guide 3

3 Image Management 31

3.1 Introduction . 31

3.2 Creating a Linux Image - Ubuntu & Fedora . 31

3.2.1 OS Installation . 32

3.2.1.1 Tweaking /etc/fstab . 32

3.2.2 Extracting the EXT4 partition . 33

3.2.3 Fetching Metadata in Fedora . 34

3.3 Uploading to OpenStack . 34

3.4 Image Listing . 35

3.5 Creating a Windows Image . 35

4 Instance Management 37

4.1 Introduction . 37

4.2 Euca2ools-Command Line Tools . 38

4.2.1 Installation . 38

4.2.2 Creation of Key Pairs . 38

4.2.3 Launch and manage instances . 38

5 Storage Management 41

5.1 Nova-volume . 41

5.1.1 Interacting with Storage Controller . 41

5.1.2 Swift . 42

6 Network Management 45

6.1 Introduction . 45

7 Security 47

7.1 Security Overview . 47

8 OpenStack Commands 49

8.1 Nova Manage Commands . 49

8.1.1 User/Role Management . 49

8.1.2 Project Management . 50

8.1.3 Database Management . 51

8.1.4 Instance Type Management . 51

8.1.5 Service Management . 51

8.1.6 Euca2ools Commands . 52

OpenStack Compute Starter Guide 5

List of Tables

2.1 Configuration . 14

This is a tutorial style beginner’s guide for OpenStack™ on Ubuntu 11.10, Oneiric Ocelot. The aim is to help the reader in setting
up a minimal installation of OpenStack.

OpenStack Compute Starter Guide 7

Chapter 1

Introduction to OpenStack and Its Components

1.1 Cloud Computing

Cloud computing is a computing model, where resources such as computing power, storage, network and software are abstracted
and provided as services on the Internet in a remotely accessible fashion. Billing models for these services are generally similar
to the ones adopted for public utilities. On-demand availability, ease of provisioning, dynamic and virtually infinite scalability
are some of the key attributes of cloud computing.

An infrastructure setup using the cloud computing model is generally referred to as the "cloud". The following are the broad
categories of services available on the cloud:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

Amazon Web Services (AWS) is one of the major players providing IaaS. AWS have two popular services - Elastic Compute
Cloud (EC2) and Simple Storage Service (S3), available through web services.

1.2 OpenStack

OpenStack is a collection of open source software projects that enterprises/service providers can use to setup and run their cloud
compute and storage infrastructure. Rackspace and NASA are the key initial contributors to the stack. Rackspace contributed
their "Cloud Files" platform (code) to power the Object Storage part of the OpenStack, while NASA contributed their "Nebula"
platform (code) to power the Compute part. OpenStack consortium has managed to have more than 100 members including
Canonical, Dell, Citrix etc. in less than a year.

OpenStack makes its services available through Amazon EC2/S3 compatible APIs and hence the client tools written for AWS
can be used with OpenStack as well.

There are 3 main service families under OpenStack

• Compute Infrastructure (Nova)

• Storage Infrastructure (Swift)

• Imaging Service (Glance)

1.2.1 Open Stack Compute Infrastructure (Nova)

Nova is the Computing Fabric controller for the OpenStack Cloud. All activities needed to support the life cycle of instances
within the OpenStack cloud are handled by Nova. This makes Nova a Management Platform that manages compute resources,
networking, authorization, and scalability needs of the OpenStack cloud. But, Nova does not provide any virtualization capabil-
ities by itself; instead, it uses libvirt APIs to interact with the supported hypervisors. Nova exposes all its capabilities through a
web services API that is compatible with the EC2 API of Amazon Web Services.

1.2.1.1 Functions and Features:

• Instance life cycle management

• Management of compute resources

• Networking and Authorization

• REST-based API

• Asynchronous eventually consistent communication

• Hypervisor agnostic : support for Xen, XenServer/XCP, KVM, UML, VMware vSphere and Hyper-V

1.2.1.2 Components of OpenStack Compute

Nova Cloud Fabric is composed of the following major components:

• API Server (nova-api)

• Message Queue (rabbit-mq server)

• Compute Workers (nova-compute)

• Network Controller (nova-network)

• Volume Worker (nova-volume)

• Scheduler (nova-scheduler)

OpenStack Compute Starter Guide 9

1.2.1.2.1 API Server (nova-api)

The API Server provides an interface to the outside world to interact with the cloud infrastructure. API server is the only
component that the outside world uses to manage the infrastructure. The management is done through web services calls using
EC2 API. The API Server then, in turn, communicates with the relevant components of the cloud infrastructure through the
Message Queue. As an alternative to EC2 API, OpenStack also provides a native API called "OpenStack API".

1.2.1.2.2 Message Queue (Rabbit MQ Server)

The OpenStack Cloud Controller communicates with other nova components such as the Scheduler, Network Controller, and
Volume Controller via AMQP(Advanced Message Queue Protocol). Nova uses asynchronous calls for request response, with a
call-back that gets triggered once a response is received. Since asynchronous communication is used, none of the user actions
get stuck for long in a waiting state. This is especially true since many actions expected by the API calls such as launching an
instance or uploading an image are time consuming.

1.2.1.2.3 Compute Worker (nova-compute)

Compute workers deal with instance management life cycle. they receive the requests for life cycle management via the Message
Queue and carry out operations. There are several Compute Workers in a typical production cloud deployment. An instance is
deployed on any of the available compute worker based on the scheduling algorithm used.

1.2.1.2.4 Network Controller (nova-network)

The Network Controller deals with the network configuration of host machines. It does operations like allocating IP addresses,
configuring VLANs for projects, implementing security groups and configuring networks for compute nodes.

1.2.1.2.5 Volume Workers (nova-volume)

Volume workers are used for the management of LVM-based instance volumes. Volume Workers perform volume related func-
tions such as creation, deletion, attaching a volume to an instance, and detaching a volume from an instance. Volumes provide
a way of providing persistent storage for use by instances, as the main disk attached to an instance is non-persistent and any
changes made to it are lost when the volume is detached or the instance is terminated. When a volume is detached from an
instance or when an instance, to which the volume is attached, is terminated, it retains the data that was stored on it when it was
attached to an instance earlier. This data can be accessed by reattaching the volume to the same instance or by attaching it to
another instances.

Any valuable data that gets accumulated during the life cycle of an instance should be written to a volume, so that it can be
accessed later. This typically applies to the storage needs of database servers etc.

1.2.1.2.6 Scheduler (nova-scheduler)

The scheduler maps the nova-API calls to the appropriate openstack components. It runs as a daemon named nova-schedule
and picks up a compute/network/volume server from a pool of available resources depending upon the scheduling algorithm in
place. A scheduler can base its decisions on various factors such as load, memory, physical distance of the availability zone, CPU
architecture, etc. The nova scheduler implements a pluggable architecture.

Currently the nova-scheduler implements a few basic scheduling algorithms:

• chance: In this method, a compute host is chosen randomly across availability zones.

• availability zone: Similar to chance, but the compute host is chosen randomly from within a specified availability zone.

• simple: In this method, hosts whose load is least are chosen to run the instance. The load information may be fetched from a
load balancer.

1.2.2 OpenStack Storage Infrastructure (Swift)

Swift provides a distributed, eventually consistent virtual object store for OpenStack. It is analogous to Amazon Web Services -
Simple Storage Service (S3). Swift is capable of storing billions of objects distributed across nodes. Swift has built-in redundancy
and failover management and is capable of archiving and media streaming. It is extremely scalable in terms of both size (Several
petabytes) and capacity (Number of objects).

1.2.2.1 Functions and Features

• Storage of large number of objects

• Storage of large sized objects

• Data Redundancy

• Archival capabilities - Work with large datasets

OpenStack Compute Starter Guide 11

• Data container for virtial machines and cloud apps

• Media Streaming capabilities

• Secure storage of objects

• Backup and archival

• Extreme scalability

1.2.2.2 Components of Swift

• Swift Account

• Swift Container

• Swift Object

• Swift Proxy

• The RING

1.2.2.3 Swift Proxy Server

The consumers interact with the Swift setup through the proxy server using the Swift API. The proxy server acts as a gatekeeper
and recieves requests from the world. It looks up the location of the appropriate entities and routes the requests to them.

The proxy server also handles failures of entities by rerouting requests to failover entities (handoff entities)

1.2.2.4 Swift Object Server

The Object server is a blob store. It’s responsibility is to handle storage, retrieval and deletion of objects stored in the local
storage. Objects are typically binary files stored in the filesystem with metadata contained as extended file attributes (xattr).

Note: xattr is supported in several filesystems such as ext3, ext4, XFS, Btrfs, JFS and ReiserFS in Linux. But it is known to work
best under XFS, JFS, ReiserFS, Reiser4, and ZFS. XFS is considered to be the best option.

1.2.2.5 Swift Container server

The container server lists the objects in a container. The lists are stored as SQLite files. The container server also tracks the
statistics like the number of objects contained and the storage size occupied by a container.

1.2.2.6 Swift Account Server

The account server lists containers the same way a container server lists objects.

1.2.2.7 The Ring

The ring contains information about the physical location of the objects stored inside Swift. It is a virtual representation of
mapping of names of entities to their real physical location. It is analogous to an indexing service that various processes use to
lookup and locate the real physical location of entities within the cluster. Entities like Accounts, Containers, Objects have their
own seperate rings.

1.2.3 OpenStack Imaging Service (Glance)

OpenStack Imaging Service is a lookup and retrieval system for virtual machine images. It can be configured to use any one of
the following 3 storage backends:

• OpenStack Object Store to store images

• S3 storage directly

• S3 storage with Object Store as the intermediate for S3 access.

1.2.3.1 Functions and Features (Glance)

• Provides imaging service

1.2.3.2 Components of OpenStack Imaging Service (Glance)

• Glance-control

• Glance-registry

OpenStack Compute Starter Guide 13

Chapter 2

Installation and Configuration

2.1 Introduction

The following section describes how to set up a minimal cloud infrastructure based on OpenStack using 3 machines. These
machines are referred to in this and subsequent chapters as Server1 and Server2 and Client1. Server1 runs all the components
of Nova as well as Glance and Swift. Server2 runs only nova-compute. Since OpenStack components follow a shared-nothing
policy, each component or any group of components can be installed on any server.

Client1 is not a required component. In our sample setup, it is used for bundling images, as a client to the web interface, and
to run euca commands to manage the infrastructure. Having this client ensures that you do not need to meddle with the servers
for tasks such as bundling. Also, bundling of Desktop Systems including Windows will require a GUI and it is better to have a
dedicated machine for this purpose. We would recommend this machine to be VT-Enabled so that KVM can be run which allows
for Windows VMs during image creation for bundling.

The installation steps use certain specifics such as host names/IP addresses etc. Modify them to suit your environment before
using them. The following table summarizes these specifics.

2.2 Server1

As shown in the figure above, Server1 contains all nova- services including nova-compute, nova-api, nova-volume, nova-network,
as well as the Image Service Glance and Swift. It contains two Network Interface Cards (NICs).

Server1 Server2 Client1

Functionality
All components of
OpenStack including
nova-compute

nova-compute Client

Network Interfaces eth0 - Public N/W, eth1 -
Private N/W

eth0 - Public N/W, eth1 -
Private N/W eth0 - Public N/W

IP addresses eth0 - 10.10.10.2, eth1 -
192.168.3.1

eth0 - 10.10.10.3, eth1 -
192.168.3.2 eth0 - 10.10.10.4

Hostname server1.example.com server2.example.com client.example.com
DNS servers 10.10.10.3 10.10.10.3 10.10.10.3
Gateway IP 10.10.10.1 10.10.10.1 10.10.10.1

Table 2.1: Configuration

2.2.1 Base OS

Install 64 bit version of Ubuntu server 11.10 keeping the following configurations in mind.

• Create the first user with the name ’localadmin’ .

• Installation lets you setup the IP address for the first interface i.e. eth0. Set the IP address details.

• During installation select only Openssh-server in the packages menu.

We will also be running nova-volume on this server and it is ideal to have a dedicated partition for the use of nova-volume. So,
ensure that you choose manual partitioning scheme while installing Ubuntu Server and create a dedicated partition with adequate
amount of space for this purpose. We have referred to this partition in the rest of the chapter as /dev/sda6. You can substitute the
correct device name of this dedicated partition based on your local setup while following the instructions. Also ensure that the
partition type is set as Linux LVM (8e) using fdisk either during install or immediately after installation is over.

Update the machine using the following commands.

sudo apt-get update

sudo apt-get upgrade

Install bridge-utils:

sudo apt-get install -y bridge-utils

Reboot the server and login as the admin user(localadmin) created during the OS installation.

2.2.2 Networking Configuration

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

address 10.10.10.2
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.10.3

auto eth1

OpenStack Compute Starter Guide 15

iface eth1 inet static
address 192.168.3.1
netmask 255.255.255.0
network 192.168.3.0
broadcast 192.168.3.255

Restart the network now

sudo /etc/init.d/networking restart

2.2.3 NTP Server

Install NTP package. This server is going to act as an NTP server for the nodes. The time on all components of OpenStack will
have to be in sync. We can run NTP server on this and have other components sync to it.

sudo apt-get install -y ntp

Open the file /etc/ntp.conf and add the following lines to make sure that the time of the server is in sync with an external server
and in case Internet connectivity is down, NTP server uses its own hardware clock as the fallback.

server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10

Restart NTP service to make the changes effective

sudo /etc/init.d/ntp restart

2.2.4 Databases

You can use MySQL, PostgreSQL or SQLite for Nova and Glance. Depending upon your choice of database, you will need to
install the necessary packages and configure the database server.

2.2.4.1 MySQL

Install mysql-server package

sudo apt-get install -y mysql-server

Create the root password for mysql. The password here is "mygreatsecret"

Change the bind address from 127.0.0.1 to 0.0.0.0 in /etc/mysql/my.cnf and it will look like this:

bind-address = 0.0.0.0

Restart MySQL server to ensure that it starts listening on all interfaces.

sudo restart mysql

2.2.4.2 PostgreSQL

Install PostgreSQL and the python driver for PostgreSQL

sudo apt-get install -y postgresql python-psycopg2

Setup PostgreSQL to listen on all interfaces by editing /etc/postgresql/9.1/main/postgresql.conf and uncommenting and modify-
ing the relevant line. Look for the right file if you have a different version of PostgreSQL

listen_addresses = ’*’

Restart PostgreSQL server to ensure that it starts listening on all interfaces.

sudo /etc/init.d/postgresql restart

2.2.4.3 SQLite

Install SQLite

sudo apt-get install -y sqlite

2.2.5 Glance

Nova can use Glance service to manage Operating System images that it needs for bringing up instances. Glance can use several
types of storage backends such as filestore, s3 etc.

sudo apt-get install -y glance

The default config file at /etc/glance/glance.conf is good to use for a simple file store as the storage backend. Glance can be
configured to use other storage backends such as Swift.

Glance uses sqlite as the default database backend. While sqlite offers a quick and easy way to get started, for production use,
you may consider a database such as MySQL or PostgreSQL.

Glance has two components - glance-api and glance-registry. These can be controlled using the concerned upstart jobs.

2.2.5.1 Database Configuration

Glance uses SQLite by default. MySQL and PostgreSQL can also be configured to work with Glance.

2.2.5.1.1 MySQL

Create a database named glance

sudo mysql -uroot -pmygreatsecret -e ’CREATE DATABASE glance;’

Create a user named glancedbadmin

sudo mysql -uroot -pmygreatsecret -e ’CREATE USER glancedbadmin;’

Grant all privileges for glancedbadmin on the Database "glance".

sudo mysql -uroot -pmygreatsecret -e "GRANT ALL PRIVILEGES ON glance.* TO ’glancedbadmin’@ ←↩
’%’ ;"

Create a password for the user "glanceadmin"

OpenStack Compute Starter Guide 17

sudo mysql -uroot -pmygreatsecret -e "SET PASSWORD FOR ’glancedbadmin’@’%’ = PASSWORD(’ ←↩
glancesecret’);"

Edit the file /etc/glance/glance-registry.conf and edit the line which contains the option "sql_connection =" to this:

sql_connection = mysql://glancedbadmin:glancesecret@10.10.10.2/glance

Restart glance-registry after making changes to /etc/glance/glance-registry.conf

sudo restart glance-registry

2.2.5.1.2 PostgreSQL

Create a user called ’glancedbadmin’ with password ’glancesecret’, create the database ’glance’ and give ’glancedbadmin’ all
privileges on that database.

sudo su - postgres
psql
CREATE user glancedbadmin;
ALTER user glancedbadmin with password ’glancesecret’;
CREATE DATABASE glance;
GRANT ALL PRIVILEGES ON database glance TO glancedbadmin;
\q
exit

Edit the file /etc/glance/glance-registry.conf and edit the line which contains the option "sql_connection =" to this:

sql_connection = postgresql://glancedbadmin:glancesecret@10.10.10.2/glance

Restart glance-registry after making changes to /etc/glance/glance-registry.conf

sudo restart glance-registry

2.2.6 Nova

Install the messaging queue server, RabbitMQ and various nova components.

sudo apt-get install -y rabbitmq-server nova-common nova-doc python-nova nova-api nova- ←↩
network nova-volume nova-objectstore nova-scheduler nova-compute

Install euca2ools package for command line tools to interact with nova.

sudo apt-get install -y euca2ools

Install unzip for extracting archives.

sudo apt-get install -y unzip

2.2.6.1 Database Configuration

Nova can use MySQL or PostgreSQL for storing its data. For non-production use, sqlite is also an option.

2.2.6.1.1 MySQL

Create a database named nova.

sudo mysql -uroot -pmygreatsecret -e ’CREATE DATABASE nova;’

Create a user named novadbadmin which has access to nova related databases.

sudo mysql -uroot -pmygreatsecret -e ’CREATE USER novadbadmin;’

Grant all privileges for novadbadmin on the Database "nova".

sudo mysql -uroot -pmygreatsecret -e "GRANT ALL PRIVILEGES ON nova.* TO ’novadbadmin’@’%’ ←↩
;"

Set password for novadbadmin.

sudo mysql -uroot -pmygreatsecret -e "SET PASSWORD FOR ’novadbadmin’@’%’ = PASSWORD(’ ←↩
novasecret’);"

2.2.6.1.2 PostgreSQL

Create a user called ’novadbadmin’ with password ’novasecret’, create the database ’nova’ and give ’novadbadmin’ all privileges
on that database.

sudo su - postgres
psql
CREATE user novadbadmin;
ALTER user novadbadmin with password ’novasecret’;
CREATE DATABASE nova;
GRANT ALL PRIVILEGES ON database nova TO novadbadmin;
\q
exit

Configure Postgresql to accept connections from users from any machine on 10.10.10.0/24 and 192.168.3.0/24 by adding the
following line to /etc/postgresql/9.1/main/pg_hba.conf.

host all all 10.10.10.0/24 md5
host all all 192.168.3.0/24 md5

Restart PostgreSQL.

/etc/init.d/postgresql restart

2.2.6.2 Nova Configuration

Edit the /etc/nova/nova.conf file to look like this.

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/var/lock/nova
--state_path=/var/lib/nova
--verbose
--s3_host=10.10.10.2
--rabbit_host=10.10.10.2
--cc_host=10.10.10.2
--nova_url=http://10.10.10.2:8774/v1.1/

OpenStack Compute Starter Guide 19

--fixed_range=192.168.0.0/16
--network_size=8
--routing_source_ip=10.10.10.2
--sql_connection=mysql://novadbadmin:novasecret@10.10.10.2/nova
--glance_api_servers=192.168.3.2:9292
--image_service=nova.image.glance.GlanceImageService
--iscsi_ip_prefix=192.168.
--vlan_interface=br100
--public_interface=eth0

For configuring with PostgreSQL change the line with --sql_connection to:

--sql_connection=postgresql://novadbadmin:novasecret@10.10.10.2/nova

For configuring with SQLite change the line with --sql_connection to:

--sql_connection=sqlite:////var/lib/nova/nova.sqlite

Install iscsitarget

sudo apt-get -y install iscsitarget iscsitarget-dkms

Enable iscsitarget.

sudo sed -i ’s/false/true/g’ /etc/default/iscsitarget

Restart the iscsitarget service

sudo service iscsitarget restart

Create a Physical Volume.

sudo pvcreate /dev/sda6

Create a Volume Group named nova-volumes.

sudo vgcreate nova-volumes /dev/sda6

Change the ownership of the /etc/nova folder and permissions for /etc/nova/nova.conf:

sudo chown -R root:nova /etc/nova
sudo chmod 644 /etc/nova/nova.conf

Restart all the nova related services.

sudo restart libvirt-bin; sudo restart nova-network; sudo restart nova-compute; sudo ←↩
restart nova-api; sudo restart nova-objectstore; sudo restart nova-scheduler; sudo ←↩
restart nova-volume; sudo restart glance-api; sudo restart glance-registry

Create nova schema in the MySQL Database.

sudo nova-manage db sync

Provide a range of IPs to be attached to the instances.

sudo nova-manage network create private 192.168.4.0/24 1 256

Allocate 32 pubic IP addresses for use with the instances starting from 10.10.10.225.

sudo nova-manage floating create --ip_range=10.10.10.224/27

Create a user with admin rights on nova.

sudo nova-manage user admin novaadmin

Create a project named proj.

sudo nova-manage project create proj novaadmin

Restart all the nova related services.

sudo restart libvirt-bin; sudo restart nova-network; sudo restart nova-compute; sudo ←↩
restart nova-api; sudo restart nova-objectstore; sudo restart nova-scheduler; sudo ←↩
restart nova-volume; sudo restart glance-api; sudo restart glance-registry

Create a directory to download nova credentials and download the zip file.

mkdir /home/localadmin/creds

Generate and save credentials for accessing/managing the nova cloud.

sudo nova-manage project zipfile proj novaadmin /home/localadmin/creds/novacreds.zip

Contents of novacreds.zip are required to use euca2ools to manage the cloud infrastructure and you will need to transfer this zip
file to any machine from where you want to run the commands from euca2ools. We will be using these credentials from client1
as well.

Navigate in to the folder created and extract the files and change their ownership.

cd /home/localadmin/creds
unzip novacreds.zip
sudo chown localadmin:localadmin /home/localadmin/creds/ -R

Here are the files extracted:

cacert.pem, cert.pem, novarc, pk.pem

novarc contains several environmental variables including your nova credentials to be set before you can use the commands from
euca2ools such euca-describe-images, euca-describe-instances etc. these variables can be set by sourcing novarc file.

In Diablo, by default novarc file contains EC2_ACCESS_KEY in a format that is not usable by euca-* commands. To fix this:

sudo nova-manage user exports novaadmin

The output will be something like:

export EC2_ACCESS_KEY=c043916c-9a0c-4f91-ad6c-4b30908b6c77
export EC2_SECRET_KEY=d0ac688e-02f3-48f3-b758-96d886461ace

Open the novarc file and replace the line

export EC2_ACCESS_KEY="novaadmin:proj"

with

export EC2_ACCESS_KEY="c043916c-9a0c-4f91-ad6c-4b30908b6c77:proj"

source /home/localadmin/creds/novarc

Check if the credentials are working and if nova has been setup properly by running:

euca-describe-availability-zones verbose

If you see something like the following with all components happy, it means that the set up is ready to be used.

OpenStack Compute Starter Guide 21

AVAILABILITYZONE nova available
AVAILABILITYZONE |- server1
AVAILABILITYZONE | |- nova-compute enabled :-) 2011-09-29 07:26:04
AVAILABILITYZONE | |- nova-scheduler enabled :-) 2011-09-29 07:26:04
AVAILABILITYZONE | |- nova-network enabled :-) 2011-09-29 07:26:07
AVAILABILITYZONE | |- nova-volume enabled :-) 2011-09-29 07:26:06

2.2.7 Swift

Install Swift via apt-get:

sudo apt-get install swift swift-proxy memcached swift-account swift-container swift-object

Install Swift via apt-get:

sudo apt-get install xfsprogs curl

2.2.7.1 Swift Configuration

There are two methods to configure the storage backend for use by Swift.

2.2.7.1.1 Physical Device (Partition) as a storage

A physical device is partitioned and used as storage. Assuming there is a secondary disk /dev/sdb :

sudo fdisk /dev/sdb

Press m for help; n for new partition; p to view the partition table; w to write changes to disk once you are done. You should now
have a partition /dev/sdb1.

2.2.7.1.2 Loopback Device (File) as storage

We create a zero filled file for use as a loopback device for the Swift storage backend. Here we use the disk copy command to
create a file named swift-disk and allocate a million 1KiB blocks (976.56 MiB) to it. So we have a loopback disk of approximately
1GiB. We can increase this size by modifying the seek value.

sudo dd if=/dev/zero of=/srv/swift-disk bs=1024 count=0 seek=1000000

We now create an xfs filesystem out of the partition or the loopback device we just created. For the loopback file, doing "file
swift-disk" will give the details of the device. For the partition details, tune2fs utility can be used with "l" parameter.

For the physical partition:

sudo mkfs.xfs -i size=1024 /dev/sdb1
sudo tune2fs -l /dev/sdb1 |grep -i inode

For the loopback file:

sudo mkfs.xfs -i size=1024 /srv/swift-disk
file /srv/swift-disk
swift-disk1: SGI XFS filesystem data (blksz 4096, inosz 1024, v2 dirs)

The storage device we created has to be mounted automatically everytime the system starts. Lets create an arbitrary mountpoint
/mnt/sdb1.

sudo mkdir /mnt/sdb1

Edit /etc/fstab and append the following line:

For the physical partiton

/dev/sdb1 /mnt/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 0

If you have a loopback file

/srv/swift-disk /mnt/sdb1 xfs loop,noatime,nodiratime,nobarrier,logbufs=8 0 0

Let’s now mount the storage device and create directories (which would act as storage nodes) and provide appropriate permissions
and ownerships (user:group format) for them. I have set the ownership to swift:swift for all relevant files.

sudo mount /mnt/sdb1
sudo mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4
sudo chown swift:swift /mnt/sdb1/*
sudo ln -s /mnt/sdb1/1 /srv/1
sudo ln -s /mnt/sdb1/2 /srv/2
sudo ln -s /mnt/sdb1/3 /srv/3
sudo ln -s /mnt/sdb1/4 /srv/4
sudo mkdir -p /etc/swift/object-server /etc/swift/container-server /etc/swift/account- ←↩

server /srv/1/node/sdb1 /srv/2/node/sdb2 /srv/3/node/sdb3 /srv/4/node/sdb4 /var/run/ ←↩
swift

sudo chown -R swift:swift /etc/swift /srv/[1-4]/

Append the following lines to /etc/rc.local just before the "exit 0":

mkdir /var/run/swift
chown swift:swift /var/run/swift

2.2.7.2 Configuring Rsync

Rsync is responsible for maintaining object replicas. It is used by various swift services to maintain consistency of objects and
perform updation operations. It is configured for all the storage nodes.

Create /etc/rsyncd.conf file and add the following lines to it:

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 127.0.0.1

[account6012]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6012.lock

[account6022]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6022.lock

[account6032]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6032.lock

OpenStack Compute Starter Guide 23

[account6042]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6042.lock

[container6011]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6011.lock

[container6021]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/container6021.lock

[container6031]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6031.lock

[container6041]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6041.lock

[object6010]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6010.lock

[object6020]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6020.lock

[object6030]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6030.lock

[object6040]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6040.lock

Set RSYNC_ENABLE=true in /etc/default/rsync and then restart the rsync service.

sudo service rsync restart

2.2.7.3 Swift Configuration

Create and edit /etc/swift/swift.conf and add the following lines to it:

[swift-hash]
random unique (preferably alphanumeric) string that can never change (DO NOT LOSE)
swift_hash_path_suffix = {place_random_unique_string_here}

You will need the random string when you add more nodes to the setup. So never lose the string.

You can generate a random string by running the following command:

od -t x8 -N 8 -A n < /dev/random

2.2.7.4 Proxy Server Configuration

Create and edit /etc/swift/proxy-server.conf and add the following lines to the file:

[DEFAULT]
bind_port = 8080
user = swift
log_facility = LOG_LOCAL1

[pipeline:main]
pipeline = healthcheck cache tempauth proxy-server

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true

[filter:tempauth]
use = egg:swift#tempauth
user_admin_admin = admin .admin .reseller_admin
user_test_tester = testing .admin

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:cache]
use = egg:swift#memcache

Note: You can find sample configuration files at the "etc" directory in the source. If you used apt-get to install swift, the
configuration samples can be found at "/usr/share/doc/swift/"

2.2.7.5 Account Server Configuration

Create an account server configuration file for node #1: /etc/swift/account-server/1.conf and add the following lines to the file

[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6012
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = account-server

[app:account-server]

OpenStack Compute Starter Guide 25

use = egg:swift#account

[account-replicator]
vm_test_mode = yes

[account-auditor]

[account-reaper]

We need to create the configuration for the rest of the three virtual nodes (/srv/2/node, /srv/3/node, /srv/4/node) as well. So we
simply make three more copies of 1.conf and set unique bind ports for the rest of the nodes (6022. 6032 and 6042) and different
local log values (LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5).

sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/2.conf
sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/3.conf
sudo cp /etc/swift/account-server/1.conf /etc/swift/account-server/4.conf

Now we need to edit the files 2.conf, etc. created by the above command and edit the bind port number and local log values.

2.2.7.6 Container Server Configuration

Create a container server configuration file for node #1: /etc/swift/container-server/1.conf and add the following lines to the file

[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6011
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container-replicator]
vm_test_mode = yes

[container-updater]

[container-auditor]

[container-sync]

We need to create the configuration for the rest of the three virtual nodes (/srv/2/node, /srv/3/node, /srv/4/node) as well. So we
simply make three more copies of 1.conf and set unique bind ports for the rest of the nodes (6021, 6031 and 6041) and different
local log values (LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5).

sudo cp /etc/swift/container-server/1.conf /etc/swift/container-server/2.conf
sudo cp /etc/swift/container-server/1.conf /etc/swift/container-server/3.conf
sudo cp /etc/swift/container-server/1.conf /etc/swift/container-server/4.conf

Now we need to edit the files 2.conf, etc. created by the above command and edit the bind port number and local log values.

2.2.7.7 Object Server Configuration

Create an object server configuration file for node #1: /etc/swift/object-server/1.conf and add the following lines to the file

[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6010
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]
vm_test_mode = yes

[object-updater]

[object-auditor]

We need to create the configuration for the rest of the three virtual nodes (/srv/2/node, /srv/3/node, /srv/4/node) as well. So we
simply make three more copies of 1.conf and set unique bind ports for the rest of the nodes (6020, 6030 and 6040) and different
local log values (LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5).

sudo cp /etc/swift/object-server/1.conf /etc/swift/object-server/2.conf
sudo cp /etc/swift/object-server/1.conf /etc/swift/object-server/3.conf
sudo cp /etc/swift/object-server/1.conf /etc/swift/object-server/4.conf

Now we need to edit the files 2.conf, etc. created by the above command and edit the bind port number and local log values.

2.2.7.8 Building the rings

Rings are important components of Swift. Run the following commands in the same order for building the rings:

pushd /etc/swift
sudo swift-ring-builder object.builder create 18 3 1
sudo swift-ring-builder object.builder add z1-127.0.0.1:6010/sdb1 1
sudo swift-ring-builder object.builder add z2-127.0.0.1:6020/sdb2 1
sudo swift-ring-builder object.builder add z3-127.0.0.1:6030/sdb3 1
sudo swift-ring-builder object.builder add z4-127.0.0.1:6040/sdb4 1
sudo swift-ring-builder object.builder rebalance
sudo swift-ring-builder container.builder create 18 3 1
sudo swift-ring-builder container.builder add z1-127.0.0.1:6011/sdb1 1
sudo swift-ring-builder container.builder add z2-127.0.0.1:6021/sdb2 1
sudo swift-ring-builder container.builder add z3-127.0.0.1:6031/sdb3 1
sudo swift-ring-builder container.builder add z4-127.0.0.1:6041/sdb4 1
sudo swift-ring-builder container.builder rebalance
sudo swift-ring-builder account.builder create 18 3 1
sudo swift-ring-builder account.builder add z1-127.0.0.1:6012/sdb1 1
sudo swift-ring-builder account.builder add z2-127.0.0.1:6022/sdb2 1
sudo swift-ring-builder account.builder add z3-127.0.0.1:6032/sdb3 1
sudo swift-ring-builder account.builder add z4-127.0.0.1:6042/sdb4 1
sudo swift-ring-builder account.builder rebalance

2.2.7.9 Running_Swift_Services

sudo swift-init main start

OpenStack Compute Starter Guide 27

To start the REST API do the following:

sudo swift-init rest start

2.2.7.10 Testing Swift

As normal user, execute the following command

curl -v -H ’X-Storage-User: admin:admin’ -H ’X-Storage-Pass: admin’ http://127.0.0.1:8080/ ←↩
auth/v1.0

The output should look like:

* About to connect() to 127.0.0.1 port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /auth/v1.0 HTTP/1.1
> User-Agent: curl/7.21.6 (i686-pc-linux-gnu) libcurl/7.21.6 OpenSSL/1.0.0e zlib/1.2.3.4 ←↩

libidn/1.22 librtmp/2.3
> Host: 127.0.0.1:8080
> Accept: */*
> X-Storage-User: admin:admin
> X-Storage-Pass: admin
>
< HTTP/1.1 200 OK
< X-Storage-Url: http://127.0.0.1:8080/v1/AUTH_admin
< X-Storage-Token: AUTH_tk441617bc550f4bb7bf51b4dc16800900
< X-Auth-Token: AUTH_tk441617bc550f4bb7bf51b4dc16800900
< Content-Length: 0
< Date: Fri, 14 Oct 2011 15:25:15 GMT
<

* Connection #0 to host 127.0.0.1 left intact

* Closing connection #0

If the above command did not throw any error and gave you an output similar to the one above, then the user accounts are being
authenticated fine. Make note of the X-Auth-Token and the X-Storage-Url. Then give the following command to check if you
can perform a GET operation successfully:

curl -v -H ’X-Auth-Token: AUTH_tk441617bc550f4bb7bf51b4dc16800900’ http://127.0.0.1:8080/v1 ←↩
/AUTH_admin

The output should be similar as follows:

* About to connect() to 127.0.0.1 port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /v1/AUTH_admin HTTP/1.1
> User-Agent: curl/7.21.6 (i686-pc-linux-gnu) libcurl/7.21.6 OpenSSL/1.0.0e zlib/1.2.3.4 ←↩

libidn/1.22 librtmp/2.3
> Host: 127.0.0.1:8080
> Accept: */*
> X-Auth-Token: AUTH_tk441617bc550f4bb7bf51b4dc16800900
>
< HTTP/1.1 204 No Content
< X-Account-Object-Count: 0
< X-Account-Bytes-Used: 0
< X-Account-Container-Count: 0
< Accept-Ranges: bytes
< Content-Length: 0
< Date: Fri, 14 Oct 2011 15:28:15 GMT
<

* Connection #0 to host 127.0.0.1 left intact

* Closing connection #0

2.3 Server2

This server runs nova-compute and all the virtual machines and hypervisor. You can also bundle images on Server2.

2.3.1 BaseOS

Install 64-bit version of Oneiric Server

2.3.2 Networking Configuration

Install bridge-utils:

sudo apt-get install -y bridge-utils

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

address 10.10.10.3
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.10.3

auto eth1
iface eth1 inet static

address 192.168.3.2
netmask 255.255.255.0
network 192.168.3.0
broadcast 192.168.3.255

Restart the network now

sudo /etc/init.d/networking restart

2.3.3 NTP Client

Install NTP package.

sudo apt-get install -y ntp

Open the file /etc/ntp.conf and add the following line to sync to server1.

server 10.10.10.2

Restart NTP service to make the changes effective

sudo /etc/init.d/ntp restart

OpenStack Compute Starter Guide 29

2.3.4 Nova Components (nova-compute alone)

Install the nova-components and dependencies.

sudo apt-get install -y nova-common python-nova nova-compute vlan

Install euca tools, for command line tools

sudo apt-get install -y euca2ools

Install unzip for extracting archives

sudo apt-get install -y unzip

Edit the /etc/nova/nova.conf file to look like this. This file is essentially similar to the configuration file (/etc/nova/nova.conf) of
Server1

--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/var/lock/nova
--state_path=/var/lib/nova
--verbose
--s3_host=10.10.10.2
--rabbit_host=10.10.10.2
--cc_host=10.10.10.2
--network_size=8
--routing_source_ip=10.10.10.2
--sql_connection=mysql://novadbadmin:novasecret@10.10.10.2/nova
--glance_api_servers=192.168.3.1:9292
--image_service=nova.image.glance.GlanceImageService
--iscsi_ip_prefix=192.168.
--vlan_interface=br100

Restart nova-compute on Server2.

sudo service restart nova-compute

On Server1, check if the second compute node (Server2) is detected by running:

euca-describe-availability-zones verbose

If you see something like the following with all components happy, it means that the set up is ready to be used.

AVAILABILITYZONE nova available
AVAILABILITYZONE |- server1
AVAILABILITYZONE | |- nova-compute enabled :-) 2011-09-30 09:26:04
AVAILABILITYZONE | |- nova-scheduler enabled :-) 2011-09-30 09:26:04
AVAILABILITYZONE | |- nova-network enabled :-) 2011-09-30 09:26:07
AVAILABILITYZONE | |- nova-volume enabled :-) 2011-09-30 09:26:06
AVAILABILITYZONE |- server2
AVAILABILITYZONE | |- nova-compute enabled :-) 2011-09-30 09:26:05

Sometimes you may have XXX instead of the smiley. The XXX are displayed when the components are not time-synced. Ensure
time synchronization across all components of your OpenStack deployment.

2.4 Client1

2.4.1 BaseOS

Install 64-bit version of Oneiric Desktop

2.4.2 Networking Configuration

Edit the /etc/network/interfaces file so as to looks like this:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 10.10.10.4
netmask 255.255.255.0
broadcast 10.10.10.255
gateway 10.10.10.1
dns-nameservers 10.10.10.3

2.4.3 NTP Client

Install NTP package.

sudo apt-get install -y ntp

Open the file /etc/ntp.conf and add the following line to sync to server1.

server 10.10.10.2

Restart NTP service to make the changes effective

sudo /etc/init.d/ntp restart

2.4.4 Client Tools

As mentioned above, this is a desktop installation of Oneiric to be used for tasks such as bundling of images. It will also be used
for managing the cloud infrastructure using euca2ools.

Install euca tools, for command line tools

sudo apt-get install -y euca2ools

Install qemu-kvm

sudo apt-get install -y qemu-kvm

Download the credentials we created for localadmin to this machine:

mkdir /home/localadmin/creds
cd /home/localadmin/creds
scp localadmin@10.10.10.2:/home/localadmin/creds/novacreds.zip .
unzip creds.zip

Source novarc file and see if connectivity to api server is working correctly:

source novarc
euca-describe-availability-zones verbose

The output should be similar to what is shown above in the configuration section for Server1.

Note: If you want to avoid manually sourcing the novarc file every time, the user can add the following line to the .profile file in
his home directory:

source /home/localadmin/creds/novarc

OpenStack Compute Starter Guide 31

Chapter 3

Image Management

3.1 Introduction

There are several pre-built images for OpenStack available from various sources. You can download such images and use them
to get familiar with OpenStack. You can refer to http://docs.openstack.org/cactus/openstack-compute/admin/content/starting-
images.html for details on using such images.

For any production deployment, you may like to have the ability to bundle custom images, with a custom set of applications or
configuration. This chapter will guide you through the process of creating Linux images of Debian and RedHat based distributions
from scratch. We have also covered an approach to bundling Windows images.

There are some minor differences in the way you would bundle a Linux image, based on the distribution. Ubuntu makes it
very easy by providing cloud-init package, which can be used to take care of the instance configuration at the time of launch.
cloud-init handles importing ssh keys for password-less login, setting host name etc. The instance acquires the instance specific
configuration from Nova-compute by connecting to a meta data interface running on 169.254.169.254.

While creating the image of a distro that does not have cloud-init or an equivalent package, you may need to take care of importing
the keys etc. by running a set of commands at boot time from rc.local.

The process used for Ubuntu and Fedora is largely the same with a few minor differences, which are explained below.

In both cases, the documentation below assumes that you have a working KVM installation to use for creating the images. We
are using the machine called ’client1’ as explained in the chapter on "Installation and Configuration" for this purpose.

The approach explained below will give you disk images that represent a disk without any partitions. Nova-compute can resize
such disks (including resizing the file system) based on the instance type chosen at the time of launching the instance. These
images cannot have ’bootable’ flag and hence it is mandatory to have associated kernel and ramdisk images. These kernel and
ramdisk images need to be used by nova-compute at the time of launching the instance.

However, we have also added a small section towards the end of the chapter about creating bootable images with multiple
partitions that can be used by nova to launch an instance without the need for kernel and ramdisk images. The caveat is that
while nova-compute can re-size such disks at the time of launching the instance, the file system size is not altered and hence, for
all practical purposes, such disks are not re-sizable.

3.2 Creating a Linux Image - Ubuntu & Fedora

The first step would be to create a raw image on Client1. This will represent the main HDD of the virtual machine, so make sure
to give it as much space as you will need.

kvm-img create -f raw server.img 5G

3.2.1 OS Installation

Download the iso file of the Linux distribution you want installed in the image. The instructions below are tested on Ubuntu
11.10 Oneiric Ocelot 64-bit server and Fedora 14 64-bit. Most of the instructions refer to Ubuntu. The points of difference
between Ubuntu and Fedora are mentioned wherever required.

wget http://releases.ubuntu.com/oneiric/ubuntu-11.10-server-amd64.iso

Boot a KVM instance with the OS installer ISO in the virtual CD-ROM. This will start the installation process. The command
below also sets up a VNC display at port 0

sudo kvm -m 256 -cdrom ubuntu-11.10-server-amd64.iso -drive file=server.img,if=scsi,index=0 ←↩
-boot d -net nic -net user -nographic ~-vnc :0

Connect to the VM through VNC (use display number :0) and finish the installation.

For Example, where 10.10.10.4 is the IP address of client1:

vncviewer 10.10.10.4 :0

During the installation of Ubuntu, create a single ext4 partition mounted on ’/’. Do not create a swap partition.

In the case of Fedora 14, the installation will not progress unless you create a swap partition. Please go ahead and create a swap
partition.

After finishing the installation, relaunch the VM by executing the following command.

sudo kvm -m 256 -drive file=server.img,if=scsi,index=0,boot=on -boot c -net nic -net user - ←↩
nographic -vnc :0

At this point, you can add all the packages you want to have installed, update the installation, add users and make any configura-
tion changes you want in your image.

At the minimum, for Ubuntu you may run the following commands

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install openssh-server cloud-init

For Fedora run the following commands as root

yum update

yum install openssh-server

chkconfig sshd on

3.2.1.1 Tweaking /etc/fstab

You will need to tweak /etc/fstab to make it suitable for a cloud instance. Nova-compute may resize the disk at the time of
launching instances based on the instance type chosen. This can make the UUID of the disk invalid. Hence we have to use file
system label as the identifier for the partition instead of the UUID. Edit /etc/fstab and change the following line from

UUID=e7f5af8d-5d96-45cc-a0fc-d0d1bde8f31c / ext4 errors=remount-ro 0 1

to

LABEL=uec-rootfs / ext4 defaults 0 0

OpenStack Compute Starter Guide 33

Also remove the network persistence rules from /etc/udev/rules.d as their presence will result in the network interface in the
instance coming up as an interface other than eth0.

sudo rm -rf /etc/udev/rules.d/70-persistent-net.rules

Shutdown the virtual machine and proceed with the next steps.

3.2.2 Extracting the EXT4 partition

The image that needs to be uploaded to OpenStack needs to be an ext4 filesystem image. Here are the steps to create a ext4
filesystem image from the raw image i.e server.img

sudo losetup -f server.img

sudo losetup -a

You should see an output like this:

/dev/loop0: [0801]:16908388 ($filepath)

Observe the name of the loop device (/dev/loop0 in our setup) when $filepath is the path to the mounted .raw file.

Now we need to find out the starting sector of the partition. Run:

sudo fdisk -cul /dev/loop0

You should see an output like this:

Disk /dev/loop0: 5368 MB, 5368709120 bytes

149 heads, 8 sectors/track, 8796 cylinders, total 10485760 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00072bd4
Device Boot Start End Blocks Id System
/dev/loop0p1 * 2048 10483711 5240832 83 Linux

Make a note of the starting sector of the /dev/loop0p1 partition i.e the partition whose ID is 83. This number should be multiplied
by 512 to obtain the correct value. In this case: 2048 x 512 = 1048576

Unmount the loop0 device:

sudo losetup -d /dev/loop0

Now mount only the partition(/dev/loop0p1) of server.img which we had previously noted down, by adding the -o parameter with
value previously calculated value

sudo losetup -f -o 1048576 server.img

sudo losetup -a

You’ll see a message like this:

/dev/loop0: [0801]:16908388 ($filepath) offset 1048576

Make a note of the mount point of our device(/dev/loop0 in our setup) when $filepath is the path to the mounted .raw file.

Copy the entire partition to a new .raw file

sudo dd if=/dev/loop0 of=serverfinal.img

Now we have our ext4 filesystem image i.e serverfinal.img

Unmount the loop0 device

sudo losetup -d /dev/loop0

3.2.3 Fetching Metadata in Fedora

Since, Fedora does not ship with cloud-init or an equivalent, you will need to take a few steps to have the instance fetch the meta
data like ssh keys etc.

Edit the /etc/rc.local file and add the following lines before the line "touch /var/lock/subsys/local"

depmod -a
modprobe acpiphp
simple attempt to get the user ssh key using the meta-data service
mkdir -p /root/.ssh
echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key| grep ’ssh- ←↩

rsa’ >> /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

Unmount the Loop partition

sudo umount /mnt

Change the filesystem label of serverfinal.img to ’uec-rootfs’

sudo tune2fs -L uec-rootfs serverfinal.img

Now, we have all the components of the image ready to be uploaded to OpenStack imaging server.

3.3 Uploading to OpenStack

The last step would be to upload the images to OpenStack Imaging Server glance. The files that need to be uploaded for the
above sample setup of Ubuntu are: vmlinuz-2.6.38-7-server, initrd.img-2.6.38-7-server, serverfinal.img

Run the following command

uec-publish-image amd64 serverfinal.img bucket1

For Fedora, the process will be similar. Make sure that you use the right kernel and initrd files extracted above.

uec-publish-image, like several other commands from euca2ools, returns the prompt back immediately. However, the upload
process takes some time and the images will be usable only after the process is complete. You can keep checking the status using
the command ’euca-describe-images’ as mentioned below.

You can upload bootable disk images without associating kernel and ramdisk images. When you do not want the flexibility of
using the same disk image with different kernel/ramdisk images, you can go for bootable disk images. This greatly simplifies the
process of bundling and uploading the images. However, the caveats mentioned in the introduction to this chapter apply. Please
note that the instructions below use server.img and you can skip all the cumbersome steps related to extracting the single ext4
partition.

OpenStack Compute Starter Guide 35

euca-bundle-image -i server.img

euca-upload-bundle -b mybucket -m /tmp/server.img.manifest.xml

euca-register mybucket/server.img.manifest.xml

3.4 Image Listing

The status of the images that have been uploaded can be viewed by using euca-describe-images command. The output should
like this:

localadmin@client1:~$ euca-describe-images

IMAGE ami-00000003 mybucket9/Fedora14Nova.img.manifest.xml available private x86_64 ←↩
machine instance-store

3.5 Creating a Windows Image

The first step would be to create a raw image on Client1, this will represent the main HDD of the virtual machine, so make sure
to give it as much space as you will need.

kvm-img create -f raw windowsserver.img 20G

OpenStack presents the disk using aVIRTIO interface while launching the instance. Hence the OS needs to have drivers for
VIRTIO. By default, the Windows Server 2008 ISO does not have the drivers for VIRTIO. Download the virtual floppy drive
containing VIRTIO drivers from the following location

http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/bin/

and attach it during the installation

Start the installation by running

sudo kvm -m 1024 -cdrom win2k8_dvd.iso -drive file=windowsserver.img,if=virtio,boot=on -fda ←↩
virtio-win-1.1.16.vfd -boot d -nographic -vnc :0

When the installation prompts you to choose a hard disk device you won’t see any devices available. Click on "Load drivers" at
the bottom left and load the drivers from A:\i386\Win2008

After the Installation is over, boot into it once and install any additional applications you need to install and make any configu-
ration changes you need to make. Also ensure that RDP is enabled as that would be the only way you can connect to a running
instance of Windows. Windows firewall needs to be configured to allow incoming ICMP and RDP connections.

For OpenStack to allow incoming RDP Connections, use euca-authorize command to open up port 3389 as described in the
chapter on "Security".

Shut-down the VM and upload the image to OpenStack

euca-bundle-image -i windowsserver.img

euca-upload-bundle -b mybucket -m /tmp/windowsserver.img.manifest.xml

euca-register mybucket/windowsserver.img.manifest.xml

OpenStack Compute Starter Guide 37

Chapter 4

Instance Management

4.1 Introduction

An instance is a virtual machine provisioned by OpenStack on one of the nova-compute servers. When you launch an instance,
a series of steps are triggered on various components of the OpenStack. During the life cycles of an instance, it moves through
various stages as shown in the diagram below:

The following interfaces can be used for managing instances in nova.

• Command line tools like euca2ools

• Custom applications developed using EC2 APIs

4.2 Euca2ools-Command Line Tools

Euca2ools from Eucalyptus provide a bunch of command line tools to manage the eucalyptus setup. These commands help you
manage images, instances, storage, networking etc. A few commands related to managing the instances are given below.

For a complete list of commands, see Appendix.

4.2.1 Installation

sudo apt-get install euca2ools

4.2.2 Creation of Key Pairs

OpenStack expects the client tools to use 2 kinds of credentials. One set of credentials are called Access Key and Secret Key that
all clients would need to use to make any requests to the Cloud Controller. Each user registered on the web interface has this set
created for him. You can download it from the web interface as mentioned in the chapter on "Web Interface".

You will also need to generate a keypair consisting of private key/public key to be able to launch instances on Eucalyptus. These
keys are injected into the instances to make password-less SSH access to the instance possible. This depends on the way the
necessary tools are bundled into the images. Please refer to the chapter on Image Management for more details.

Keypairs can also be generated using the following commands.

cd ~/creds
euca-add-keypair mykey > mykey.priv
chmod 600 mykey.priv

This creates a new keypair called mykey. The private key mykey.priv is saved locally which can be used to connect to an instance
launched with mykey as the keypair. euca-describe-keypairs command to list the available keypairs.

The output should like this:

uecadmin@client1:~$ euca-describe-keypairs
KEYPAIR mykey f7:ac:8e:f5:05:19:2b:31:28:8c:9b:d7:b8:07:0c:3c:b6:34:8f:79
KEYPAIR helloworld 12:96:b3:21:34:8d:6a:3f:92:2e:2b:70:23:ff:7f:51:b5:b7:ad:37
KEYPAIR ubuntu f6:af:9a:59:65:35:32:c4:3a:c4:62:0e:e1:44:0f:71:29:03:2d:91
KEYPAIR lucid 74:04:70:33:ed:57:7a:30:36:1f:ca:c6:ec:d5:4f:10:34:1a:52:51
KEYPAIR karmic 01:f9:aa:5f:4d:20:e2:53:d1:29:d0:0f:e2:f3:8c:21:91:70:7e:c8

To delete an existing keypair:

euca-delete-keypair helloworld

The above tasks can be achieved using Hybridfox from the "Keypairs" tab.

4.2.3 Launch and manage instances

There are several commands that help in managing the instances. Here are a few examples:

$ euca-run-instances ami-00000003 -k mykey -t m1.tiny

RESERVATION r-f1ek1ojb proj default
INSTANCE i-00000005 ami-00000003 pending mykey (proj, None) 0 m1.tiny 2011-10-19 ←↩

T12:48:04Z unknown zone ami-00000000 ami-00000000

OpenStack Compute Starter Guide 39

$ euca-describe-instances

RESERVATION r-f1ek1ojb proj default
INSTANCE i-00000005 ami-00000003 192.168.4.3 192.168.4.3 running mykey (proj, ←↩

Openstackvalidationserver1) 0 m1.tiny 2011-10-19T12:48:04Z nova ami-00000000 ami ←↩
-00000000

$ euca-reboot-instances i-00000005

$ euca-terminate-instances i-00000005

$ euca-run-instances ami-XXXXXXXX -k mykey

$ euca-get-console-output i-00000005

i-00000005
2011-10-07T07:22:40.795Z
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Linux version 2.6.32-21-server (buildd@yellow) (gcc version 4.
4.3 (Ubuntu 4.4.3-4ubuntu5)) #32-Ubuntu SMP Fri Oct 07 09:17:34 UTC 2011 (Ub
untu 2.6.32-21.32-server 2.6.32.11+drm33.2)
.............

You can make password less ssh access to the instance as follows:

ssh -i mykey.priv user@192.168.4.3

VM type has implications for harddisk size, amount of RAM and number of CPUs allocated to the instance. Check the VM types
available.

sudo nova-manage instance_type list

OpenStack Compute Starter Guide 41

Chapter 5

Storage Management

5.1 Nova-volume

Nova-volume provides persistent block storage compatible with Amazon’s Elastic Block Store. The storage on the instances is
non persistent in nature and hence any data that you generate and store on the file system on the first disk of the instance gets
lost when the instance is terminated. You will need to use persistent volumes provided by nova-volume if you want any data
generated during the life of the instance to persist after the instance is terminated.

Commands from euca2ools package can be used to manage these volumes.

Here are a few examples:

5.1.1 Interacting with Storage Controller

Make sure that you have sourced novarc before running any of the following commands. The following commands refer to a
zone called ’nova’, which we created in the chapter on "Installation and Configuration". The project is ’proj’ as referred to in the
other chapters.

Create a 10 GB volume

euca-create-volume -s 10 -z nova

You should see an output like:

VOLUME vol-00000002 1 creating (proj, None, None, None) 2011-04-21T07:19:52Z

List the volumes

euca-describe-volumes

You should see an output like this:

VOLUME vol-00000001 1 nova available (proj, server1, None, None) ←↩
2011-04-21T05:11:22Z

VOLUME vol-00000002 1 nova available (proj, server1, None, None) ←↩
2011-04-21T07:19:52Z

Attach a volume to a running instance

euca-attach-volume -i i-00000009 -d /dev/vdb vol-00000002

A volume can only be attached to one instance at a time. When euca-describe-volumes shows the status of a volume as ’available’,
it means it is not attached to any instance and ready to be used. If you run euca-describe-volumes, you can see that the status
changes from "available" to "in-use" if it is attached to an instance successfully.

When a volume is attached to an instance, it shows up as an additional SCSI disk on the instance. You can login to the instance
and mount the disk, format it and use it.

Detach a volume from an instance.

euca-detach-volume vol-00000002

The data on the volume persists even after the volume is detached from an instance. You can see the data on reattaching the
volume to another instance.

Even though you have indicated /dev/vdb as the device on the instance, the actual device name created by the OS running inside
the instance may differ. You can find the name of the device by looking at the device nodes in /dev or by watching the syslog
when the volume is being attached.

5.1.2 Swift

Swift is a storage service that can be used for storage and archival of objects. Swift provides a REST interface. You can use
’curl’ command to get familiar with the service. All requests to Swift service need an authentication token. This authentication
token can be obtained by providing your user credentials on Swift. For more details refer to the Swift section in the "Installation
& Configuration" chapter.

Execute the following command and make a note of X-Auth-Token. You will need this token to use in all subsequent commands.

curl -v -H ’X-Storage-User: admin:admin’ -H ’X-Storage-Pass: admin’ http://10.10.10.2:8080/ ←↩
auth/v1.0

In the following command examples we are using ’AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ as the X-Auth-Token. Re-
place this with the appropriate token you obtained in the above step.

To create a container:

curl -X PUT -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/mycontainer

To list all containers in current account:

curl -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http://10.10.10.2:8080/v1/ ←↩
AUTH_admin/

Uploading a file "file1" to container "mycontainer"

curl -X PUT -T file1 -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/mycontainer/

To list all objects in a container:

curl -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http://10.10.10.2:8080/v1/ ←↩
AUTH_admin/mycontainer

To list all objects in a container that starts with a particular prefix "fi":

curl -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http://10.10.10.2:8080/v1/ ←↩
AUTH_admin/mycontainer/?prefix=fi

To download a particular file "file1" from the container "mycontainer":

curl -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http://10.10.10.2:8080/v1/ ←↩
AUTH_admin/mycontainer/file1

OpenStack Compute Starter Guide 43

To download file1 and save it locally as localfile1:

curl -o localfile1 -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/mycontainer/file1

To delete a container "mycontainer"

curl -X DELETE -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/mycontainer

To delete a specific file "file1" from the container:

curl -X DELETE -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/mycontainer/file1

To get metadata associated with a Swift account:

curl -v -X HEAD -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/

To get metadata associated with a container:

curl -v -X HEAD -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http ←↩
://10.10.10.2:8080/v1/AUTH_admin/mycontainer

You can request the data from Swift in XML or JSON format by specifying the "format" paramater. This parameter can be
applied to any of the above requests. Here are a few examples:

curl -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http://10.10.10.2:8080/v1/ ←↩
AUTH_admin/?format=json

curl -H ’X-Auth-Token: AUTH_tk3bb59eda987446c79160202d4dfbdc8c’ http://10.10.10.2:8080/v1/ ←↩
AUTH_admin/?format=xml

The above operations can also be done using ’swift’ command. For instructions on using ’swift’ command, please refer to "swift
--help".

OpenStack Compute Starter Guide 45

Chapter 6

Network Management

6.1 Introduction

In OpenStack, the networking is managed by a component called "nova-network". This interacts with nova-compute to ensure
that the instances have the right kind of networking setup for them to communicate among themselves as well as with the outside
world. Just as in Eucalyptus or AWS, each OpenStack instance can have 2 IP addresses attached to it. One is the private IP
address and the other called Public IP address. The private IP address is typically used for communication between instances and
the public IP is used for communication of instances with the outside world. The so called public IP address need not be a public
IP address route-able on the Internet ; it can even be an address on the corporate LAN.

The network configuration inside the instance is done with the private IP address in view. The association between the private IP
and the public IP and necessary routing is handled by nova-network and the instances need not be aware of it.

nova-network provides 3 different network management options. Currently you can only choose one of these 3 options for your
network management.

• Flat Network

• Flat DHCP Network

• VLAN Network

VLAN Network is the most feature rich and is the idea choice for a production deployment, while the other modes can be used
while getting familiar with OpenStack and when you do not have VLAN Enabled switches to connect different components of
the OpenStack infrastructure.

The network type is chosen by using one of the following configuration options in nova.conf file. If no network manager is
specified explicitly, the default network manager, VLANManager is used.

--network_manager = nova.network.manager.FlatManager
--network_manager = nova.network.manager.FlatDHCPManager
--network_manager = nova.network.manager.VlanManager

In each of these cases, run the following commands to set up private and public IP addresses for use by the instances:

sudo nova-manage network create private 192.168.4.0/24 1 256
sudo nova-manage floating create --ip_range=10.10.10.224/27

The public IP which you are going to associate with an instance needs to be allocated first by using "euca-allocate-address"
command:

euca-allocate-address 10.10.2.225

You can then associate a public IP to a running instance by using "euca-associate-address" command:

euca-associate-address -i i-0000008 10.10.2.225

Please refer to http://docs.openstack.org/openstack-compute/admin/content/ch04.html for more details about each of the net-
working types.

OpenStack Compute Starter Guide 47

Chapter 7

Security

7.1 Security Overview

OpenStack provides ingress filtering for the instances based on the concept of security groups. OpenStack accomplishes ingress
filtering by creating suitable IP Tables rules. A Security Group is a named set of rules that get applied to the incoming packets
for the instances. You can specify a security group while launching an instance. Each security group can have multiple rules
associated with it. Each rule specifies the source IP/network, protocol type, destination ports etc. Any packet matching these
parameters specified in a rule is allowed in. Rest of the packets are blocked.

A security group that does not have any rules associated with it causes blocking of all incoming traffic. The mechanism only
provides ingress filtering and does not provide any egress filtering. As a result all outbound traffic is allowed. If you need to
implement egress filtering, you will need to implement that inside the instance using a firewall.

Tools like Hybridfox let you manage security groups and also let you specify a security group while launching an instance. You
can also use command line tools from euca2ools package such as euca-authorize for this purpose.

Here are a few euca commands to manage security groups. Like in our earlier chapters, the project name is "proj"

Create a security group named "myservers".

euca-add-group -d "My Servers" myservers

Add a rule to the security group "myservers" allowing icmp and tcp traffic from 192.168.1.1.

euca-authorize -P tcp -s 192.168.1.1 -p 22 myservers
euca-authorize -P icmp -s 192.168.1.1 -t -1:-1 myservers

For a Windows instance, add a rule to accept incoming RDP connections

euca-authorize -P tcp -s 192.168.1.1 -p 3389 myservers

Rules can be viewed with euca-describe-groups command.

$ euca-describe-groups
GROUP proj myservers my servers
PERMISSION proj myservers ALLOWS tcp 22 22 FROM CIDR 192.168.1.1
PERMISSION proj myservers ALLOWS icmp -1 -1 FROM CIDR 192.168.1.1
PERMISSION proj myservers ALLOWS tcp 3389 3389 FROM CIDR 192.168.1.1

Remove the rule for ssh traffic from the source ip 192.168.1.1 from the security group "myservers"

euca-revoke -P tcp -s 192.168.1.1 -p 22 myservers

Delete the security group "myservers"

euca-delete-group myservers

Launch an instance associated with the security group "myservers".

euca-run-instances ami-XXXXXXXX -k mykey -g myservers

When you do not specify a security group, the instance gets associated with an inbuilt security group called "default". The rules
for this security group can also be modified using euca-add, euca-revoke commands.

OpenStack Compute Starter Guide 49

Chapter 8

OpenStack Commands

8.1 Nova Manage Commands

OpenStack provides commands for administrative tasks such as user/role management, network management etc. In all the
examples we will use username as "novadmin" and project name as "proj". All the nova-manage commands will need to be run
as "root". Either run them as root or run them under sudo.

8.1.1 User/Role Management

Add a new user

nova-manage user create --name=novaadmin

Add a user along with access and secret keys.

nova-manage user create --name=novaadmin --access=myaccess --secret=mysecret

Add a user with admin privileges

nova-manage user admin --name=novaadmin --access=myaccess --secret=mysecret

List existing users

nova-manage user list

Delete an existing user

nova-manage user delete --name=novaadmin

Associate a user to a specific existing project

nova-manage project add --project=proj --user=novaadmin

Remove a user from a specific existing project.

nova-manage project remove --project=proj --user=novaadmin

View access key and secret keys of particular user.

nova-manage user exports --name=novaadmin

Adding a user sitewide role.

nova-manage role add --user=novaadmin --role=netadmin

Remove a sitewide role from a particular user

nova-manage role remove --user=novaadmin --role=netadmin

Adding a user project specific role.

nova-manage role add --user=novaadmin --role=netadmin --project=proj

Remove a project specific role from a particular user

nova-manage role remove --user=novaadmin --role=netadmin --project=proj

With the command below, you can change any or all of access key, secret key and admin role flag for a particular user.

Syntax:
nova-manage user modify username new_access_key new_secret_key admin_flag <admin flag - T ←↩

or F>

nova-manage user modify --name=novaadmin --access=mygreatnewaccesskey "" ""

nova-manage user modify --name=novaadmin "" --secret=mygreatsecretkey "" ""

nova-manage user modify --name=novaadmin "" "" --is_admin=T

Check if a particular user has a specific role or not. The role can be either local or global. The output of the command will be
True or False

nova-manage role has --user=novaadmin --role=cloudadmin
True

nova-manage role has --role=novaadmin --role=netadmin --project=proj
False

8.1.2 Project Management

The following commands help you create and manage projects. "nova-manage account" command is an alias to "nova-manage
project" and you can use them interchangeably.

Create a project. It requires you to mention name of the project admin as well. css1 is the name of the project and user5 is the
name of the project admin here.

nova-manage project create --project=css1 --user=user5 --desc="My new project"

List the registered projects.

nova-manage project list

Download the credentials and associated file for a specific project. Please refer to the chapter on "Installation & Configuration"
for more details.

nova-manage project zipfile --project=csscorp --user=user5 --file=/home/user5/mysec.zip

Delete an existing project.

nova-manage project delete --project=css1

Check the project wise resource allocation. The output will look like this:

OpenStack Compute Starter Guide 51

nova-manage project quota --project=css1
metadata_items: 128
gigabytes: 1000
floating_ips: 10
instances: 10
volumes: 10
cores: 20

8.1.3 Database Management

Nova stores the data related to the projects, users, resources etc. in a database, by default in a MySQL database.

Print the current database version.

nova-manage db version

Sync the DB schema to be in sync with the current configuration.

nova-manage db sync

8.1.4 Instance Type Management

Nova has the concept of instance types. Each instance type is defined with certain amount of RAM and certain size of the hard
disk. When an instance is launched with a particular instance type, Nova resizes the disk image to suit the instance type and
allocates the RAM as defined for the instance type chosen. Nova calls instance types as ’flavors’ and lets you add to the list of
flavors. By default Nova has 5 types - m1.tiny, m1.small, m1.medium, m1.large and m1.xlarge.

List the current instance types

nova-manage flavor list
m1.medium: Memory: 4096MB, VCPUS: 2, Storage: 40GB, FlavorID: 3, Swap: 0GB, RXTX Quota: 0 ←↩

GB, RXTX Cap: 0MB
m1.large: Memory: 8192MB, VCPUS: 4, Storage: 80GB, FlavorID: 4, Swap: 0GB,

RXTX Quota: 0GB, RXTX Cap: 0MB
m1.tiny: Memory: 512MB, VCPUS: 1, Storage: 0GB, FlavorID: 1, Swap: 0GB,

RXTX Quota: 0GB, RXTX Cap: 0MB
m1.xlarge: Memory: 16384MB, VCPUS: 8, Storage: 160GB, FlavorID: 5, Swap: 0GB, RXTX Quota: ←↩

0GB, RXTX Cap: 0MB
m1.small: Memory: 2048MB, VCPUS: 1, Storage: 20GB, FlavorID: 2, Swap: 0GB,

RXTX Quota: 0GB, RXTX Cap: 0MB

Define a new instance type

nova-manage flavor create --name=m1.miniscule --memory=128 --cpu=1 --local_gb=20 --flavor=6 ←↩
--swap=0 --rxtx_quota=0 --rxtx_cap=0

Remove an existing instance type.

nova-manage flavor delete --name=m1.miniscule
m1.miniscule deleted

8.1.5 Service Management

Check state of available services.

nova-manage service list
server1 nova-scheduler enabled :-) 2011-04-06 17:01:21
server1 nova-network enabled :-) 2011-04-06 17:01:30
server1 nova-compute enabled :-) 2011-04-06 17:01:22
server2 nova-compute enabled :-) 2011-04-06 17:01:28

Disable a running service

nova-manage service disable <hostname> <service>
nova-manage service disable --host=server2 --service=nova-compute

nova-manage service list
server1 nova-network enabled :-) 2011-04-06 17:05:11
server1 nova-compute enabled :-) 2011-04-06 17:05:13
server1 nova-scheduler enabled :-) 2011-04-06 17:05:17
server2 nova-compute disabled :-) 2011-04-06 17:05:19

Re-enable a service that is currently disabled

Syntax: nova-manage service enable <hostname> <service>
nova-manage service enable --host=server2 --service=nova-compute

nova-manage service list
server1 nova-scheduler enabled :-) 2011-04-06 17:08:23
server1 nova-network enabled :-) 2011-04-06 17:08:22
server1 nova-compute enabled :-) 2011-04-06 17:08:23
server2 nova-compute enabled :-) 2011-04-06 17:08:19

Get Information about resource utilization of the OpenStack components

Syntax: nova-manage service describe_resource <hostname>

nova-manage service describe_resource --host=server1
HOST PROJECT cpu mem(mb) disk(gb)
server1(total) 2 3961 224
server1(used) 1 654 30
server1 proj 2 1024 0

8.1.6 Euca2ools Commands

euca2ools provide a set of commands to communicate with the cloud. All these commands require you to authenticate and this
is done by sourcing novarc file as detailed in the chapter on "Installation & Configuration"

Most of the euca2ools command line utilities work with OpenStack, just as they work with EC2 of AWS. There may be some
differences due to some of the functionality that is yet to be implemented in OpenStack. Help is available for each of these
commands with the switch --help.

• euca-add-group

• euca-delete-bundle

• euca-describe-instances

• euca-register

• euca-add-keypair

• euca-delete-group

• euca-describe-keypairs

OpenStack Compute Starter Guide 53

• euca-release-address

• euca-allocate-address

• euca-delete-keypair

• euca-describe-regions

• euca-reset-image-attribute

• euca-associate-address

• euca-delete-snapshot

• euca-describe-snapshots

• euca-revoke

• euca-attach-volume

• euca-delete-volume

• euca-describe-volumes

• euca-run-instances

• euca-authorize

• euca-deregister

• euca-detach-volume

• euca-terminate-instances

• euca-bundle-image

• euca-describe-addresses

• euca-disassociate-address

• euca-unbundle

• euca-bundle-vol

• euca-describe-availabity-zones

• euca-download-bundle

• euca-upload-bundle

• euca-confirm-product-instance

• euca-describe-groups

• euca-get-console-output

• euca-version

• euca-create-snapshot

• euca-describe-image-attribute

• euca-modify-image-attribute

• euca-create-volume

• euca-describe-images

• euca-reboot-instances

